Симулятор ядерных ударов. Ядерный взрыв — самое страшное открытие человечества Радиус взрыва атомной бомбы

Евгения Пожидаева про Беркем-шоу в преддверии очередной Генассамблеи ООН.

"... не самые выгодные для России инициативы легитимизируются представлениями, господствующими в массовом сознании уже семь десятков лет. Наличие ядерного оружия рассматривается как предпосылка для глобальной катастрофы. Между тем, эти представления в значительной мере являют собой гремучую смесь из пропагандистских штампов и откровенных "городских легенд" . Вокруг "бомбы" сложилась обширная мифология, имеющая очень отдалённое отношение к реальности.

Попробуем разобраться хотя бы с частью собрания ядерных мифов и легенд ХХI-го века.

Миф №1

Действие ядерного оружия может иметь "геологические" масштабы.

Так, мощность известной "Царь-Бомбы" (она же "Кузькина-мать") "уменьшили (до 58-ми мегатонн), чтобы не пробить земную кору до мантии. 100 мегатонн на это вполне хватило бы". Более радикальные варианты добираются до "необратимых тектонических сдвигов" и даже "раскалывания шарика" (т.е. планеты). К реальности, как несложно догадаться, это имеет не просто нулевое отношение - оно стремится в область отрицательных чисел.

Итак, каково "геологическое" действие ядерного оружия в действительности?

Диаметр воронки, образующейся при наземном ядерном взрыве в сухих песчаных и глинистых грунтах (т.е., по сути, максимально возможный - на более плотных грунтах он будет, естественно, меньше), рассчитывается по весьма незатейливой формуле "38 умножить на корень кубический из мощности взрыва в килотоннах" . Взрыв мегатонной бомбы создаёт воронку диаметром около 400 м, при этом её глубина в 7-10 раз меньше (40-60 м). Наземный взрыв 58-ми мегатонного боеприпаса, таким образом, образует воронку диаметром около полутора километров и глубиной порядка 150-200 м. Взрыв "Царь-бомбы" был, с некоторыми нюансами, воздушным, и произошёл над скальным грунтом - с соответствующими последствиями для "копательной" эффективности. Иными словами, "пробивание земной коры" и "раскалывание шарика" - это из области рыбацких баек и пробелов в области ликвидации неграмотности .

Миф №2

"Запасов ядерного оружия в России и США хватает на гарантированное 10-20 кратное уничтожение всех форм жизни на Земле". "Ядерного оружия, которое уже есть, хватит на то, чтобы уничтожить жизнь на земле 300 раз подряд".

Реальность: пропагандистский фейк.

При воздушном взрыве мощностью в 1 Мт зона полных разрушений (98% погибших) имеет радиус 3,6 км, сильных и средних разрушений - 7,5 км. На расстоянии 10 км гибнет лишь 5% населения (впрочем, 45% получают травмы разной степени тяжести). Иными словами, площадь "катастрофического" поражения при мегатонном ядерном взрыве составляет 176,5 квадратных километра (примерная площадь Кирова, Сочи и Набережных Челнов; для сравнения - площадь Москвы на 2008-й - 1090 квадратных километров). На март 2013-го Россия имела 1480 стратегических боеголовок, США - 1654. Иными словами, Россия и США могут совместными усилиями превратить в зону разрушений вплоть до средних включительно страну размером с Францию, но никак не весь мир.

При более прицельном "огне" США могут даже после разрушения ключевых объектов , обеспечивающих ответный удар (командные пункты, узлы связи, ракетные шахты, аэродромы стратегической авиации и т.д.) практически полностью и сразу уничтожить практически всё городское население РФ (в России 1097 городов и около 200 "негородских" поселений с численностью населения больше 10 тыс. человек); погибнет и значительная часть сельского (в основном из-за радиоактивных осадков). Довольно очевидные косвенные эффекты в короткие сроки уничтожат значительную часть выживших. Ядерная атака РФ даже в "оптимистическом" варианте будет намного менее эффективной - население США более чем вдвое многочисленно, гораздо более рассредоточено, Штаты обладают заметно большей "эффективной" (то есть сколько-нибудь освоенной и населённой) территорией, менее затрудняющим выживание уцелевших климатом. Тем не менее, ядерного залпа России с лихвой хватит, чтобы довести противника до центральноафриканского состояния - при условии, что основная часть её ядерного арсенала не будет уничтожена превентивным ударом.

Естественно, все эти расчёты исходят из варианта неожиданной атаки , без возможности предпринять какие-либо меры по снижению ущерба (эвакуация, использование убежищ). В случае их использования потери будут кратно меньше. Иными словами, две ключевые ядерные державы, обладающие подавляющей долей атомного оружия, способны практически стереть с лица Земли друг друга, но не человечество, и, тем более, биосферу. Фактически, для почти полного уничтожения человечества потребуется не менее 100 тыс. боеголовок мегатонного класса.

Впрочем, возможно, человечество убьют косвенные эффекты - ядерная зима и радиоактивное заражение? Начнём с первой.

Миф №3

Обмен ядерными ударами породит глобальное снижение температуры с последующим коллапсом биосферы.

Реальность: политически мотивированная фальсификация.

Автором концепции ядерной зимы является Карл Саган , последователями которого оказались два австрийских физика и группа советского физика Александрова. По итогам их трудов появилась следующая картина ядерного апокалипсиса. Обмен ядерными ударами приведёт к массовым лесным пожарам и пожарам в городах. При этом зачастую будет наблюдаться "огненный шторм", в реальности наблюдавшийся при крупных городских пожарах - например, лондонском 1666-го года, Чикагском 1871-го, московском 1812-го. Во время Второй мировой его жертвами стали подвергшиеся бомбардировкам Сталинград, Гамбург, Дрезден, Токио, Хиросима и ещё ряд менее крупных городов.

Суть явления такова. Над зоной крупного пожара значительно нагревается воздух, и начинает подниматься вверх. На его место приходят новые массы воздуха, вполне насыщенные поддерживающим горение кислородом. Возникает эффект "кузнечных мехов" или "дымовой трубы". В итоге пожар продолжается до тех пор, пока не выгорает всё, что может гореть - а при развивающихся в "кузнечном горне" огненного шторма температурах гореть может многое.

По итогам лесных и городских пожаров в стратосферу отправятся миллионы тонн сажи, которая экранирует солнечное излучение - при взрыве 100 мегатонн солнечный поток у поверхности Земли сократится в 20 раз, 10000 мегатонн - в 40. На несколько месяцев наступит ядерная ночь, фотосинтез прекратится. Глобальные температуры в "десятитысячном" варианте упадут минимум на 15 градусов, в среднем - на 25, в некоторых районах - на 30-50. После первых десяти дней температура начнёт медленно повышаться, но в целом продолжительность ядерной зимы составит не менее 1-1,5 года. Голод и эпидемии растянут время коллапса до 2-2,5 лет.

Впечатляющая картина, не правда ли? Проблема в том, что это фейк. Так, в случае лесных пожаров модель исходит из того, что взрыв мегатонной боеголовки немедленно вызовет пожар на площади 1000 квадратных километров. Между тем, в действительности на расстоянии в 10 км от эпицентра (площадь 314 квадратных километров) уже будут наблюдаться только отдельные очаги. Реальное дымообразование при лесных пожарах в 50-60 раз меньше заявленного в модели . Наконец, основная масса сажи при лесных пожарах не достигает стратосферы, и довольно быстро вымывается из нижних атмосферных слоёв.

Равным образом, огненный шторм в городах требует для своего возникновения весьма специфических условий - равнинной местности и огромной массы легко возгораемых построек (японские города 1945-го года - это дерево и промасленная бумага; Лондон 1666-го - это в основном дерево и оштукатуренное дерево, и то же самое относится к старым немецким городам). Там, где не соблюдалось хотя бы одно из этих условий, огненный шторм не возникал - так, Нагасаки, застроенный в типично японском духе, но расположенный в холмистой местности, так и не стал его жертвой. В современных городах с их железобетонной и кирпичной застройкой огненный шторм не может возникнуть по чисто техническим причинам. Пылающие как свечи небоскрёбы, нарисованные буйным воображением советских физиков - не более чем фантом. Добавлю, что городские пожары 1944-45, как, очевидно, и более ранние, не приводили к значительному выбросу сажи в стратосферу - дымы поднимались только на 5-6 км (граница стратосферы 10-12 км) и вымывались из атмосферы за несколько дней ("чёрный дождь").

Иными словами, количество экранирующей сажи в стратосфере окажется на порядки меньше, чем заложено в модели . При этом концепция ядерной зимы была уже проверена экспериментально. Перед "Бурей в пустыне" Саган утверждал, что выбросы нефтяной сажи от горящих скважин приведут к достаточно сильному похолоданию в глобальных масштабах - "году без лета" по образцу 1816-го, когда каждую ночь в июне-июле температура падала ниже нуля даже в США. Среднемировые температуры упали на 2,5 градуса, следствием стал глобальный голод. Однако в реальности после войны в Заливе ежедневное выгорание 3 млн. баррелей нефти и до 70 млн. кубометров газа, продолжавшееся около года, оказало на климат очень локальный (в пределах региона) и ограниченный эффект.

Таким образом, ядерная зима невозможна даже в том случае, если ядерные арсеналы снова вырастут до уровня 1980- х. Экзотические варианты в стиле размещения ядерных зарядов в угольных шахтах с целью "сознательного" создания условий для возникновения ядерной зимы тоже неэффективны - поджечь угольный пласт, не обрушив при этом шахту, малореально, и в любом случае задымление окажется "низковысотным". Тем не менее, работы на тему ядерной зимы (с ещё более "оригинальными" моделями) продолжают публиковаться, однако... Последний всплеск интереса к ним странным образом совпал с инициативой Обамы по всеобщему ядерному разоружению.

Второй вариант "косвенного" апокалипсиса - глобальное радиоактивное заражение.

Миф №4

Атомная война приведёт к превращению значительной части планеты в ядерную пустыню, а подвергшаяся ядерным ударам территория будет бесполезна для победителя из-за радиоактивного заражения.

Посмотрим на то, что потенциально должно её создать. Ядерные боеприпасы мощностью в мегатонны и сотни килотонн - водородные (термоядерные). Основная часть их энергии выделяется за счёт реакции синтеза, в ходе которой радионуклиды не возникают. Однако такие боеприпасы всё же содержат делящиеся материалы. В двухфазном термоядерном устройстве собственно ядерная часть выступает только в качестве триггера, запускающего реакцию термоядерного синтеза. В случае с мегатонной боеголовкой - это маломощный плутониевый заряд мощностью в примерно в 1 килотонну. Для сравнения - плутониевая бомба, упавшая на Нагасаки, имела эквивалент в 21 кт, при этом в ядерном взрыве сгорело лишь 1,2 кг делящегося вещества из 5, остальная плутониевая "грязь" с периодом полураспада в 28 тысяч лет просто рассеялась по окрестностям, внеся дополнительный вклад в радиоактивное заражение. Более распространены, однако, трёхфазные боеприпасы, где зона синтеза, "заряженная" дейтеридом лития, заключена в урановую оболочку, в которой происходит "грязная" реакция деления, усиливающая взрыв. Она может быть сделана даже из непригодного для обычных ядерных боеприпасов урана-238. Однако из-за весовых ограничений в современных стратегических боеприпасах предпочитают использовать ограниченное количество более эффективного урана-235. Тем не менее, даже в этом случае количество радионуклидов, выделившихся при воздушном взрыве мегатонного боеприпаса, превысит уровень Нагасаки не в 50, как следовало бы, исходя из мощности, а в 10 раз.

При этом из-за преобладания короткоживущих изотопов интенсивность радиоактивного излучения быстро падает - снижаясь через 7 часов в 10 раз, 49 часов - в 100, 343 часа - в 1000 раз. Далее, отнюдь нет необходимости ждать, пока радиоактивность снизится до пресловутых 15-20 микрорентген в час - люди без каких-либо последствий столетиями живут на территориях, где естественный фон превышает стандарты в сотни раз. Так, во Франции фон местами составляет до 200 мкр/ч, в Индии (штаты Керала и Тамилнад) - до 320 мкр/ч, в Бразилии на пляжах штатов Рио-де-Жанейро и Эспириту-Санту фон колеблется от 100 до 1000 мкр/ч (на пляжах курортного города Гуарапари - 2000 мкр/ч). В курортном иранском Рамсаре средний фон составляет 3000, а максимальный - 5000 мкр/ч, при этом его основным источником является радон - что предполагает массированное поступление этого радиоактивного газа в организм.

В итоге, например, панические прогнозы, раздававшиеся после хиросимской бомбардировки ("растительность сможет появиться только через 75 лет, а через 60-90 - сможет жить человек"), скажем так мягко, не оправдались. Выжившее население не эвакуировалось, однако не вымерло полностью и не мутировало. Между 1945-м и 1970-м среди переживших бомбардировку количество лейкемий превысило норму менее чем в два раза (250 случаев против 170 в контрольной группе).

Заглянем на Семипалатинский полигон. Всего на нём было произведено 26 наземных (наиболее грязных) и 91 воздушный ядерный взрыв. Взрывы в большинстве своём тоже были крайне "грязными" - особенно отличилась первая советская ядерная бомба (знаменитая и крайне неудачно спроектированная сахаровская "слойка"), в которой из 400 килотонн общей мощности на реакцию синтеза пришлось не более 20%. Впечатляющие выбросы обеспечил и "мирный" ядерный взрыв, с помощью которого было создано озеро Чаган. Как выглядит результат?

На месте взрыва пресловутой слойки - заросшая абсолютно нормальной травой воронка. Не менее банально, несмотря на витающую вокруг пелену истерических слухов, выглядит и ядерное озеро Чаган. В российской и казахской прессе можно встретить пассажи вроде этого. "Любопытно, что вода в "атомном" озере чистая, и там даже водится рыба. Однако края водоема "фонят" настолько сильно, что их уровень излучения фактически приравнивается к радиоактивным отходам. В этом месте дозиметр показывает 1 микрозиверт в час, что в 114 раз больше нормы". На приложенной к статье фотографии дозиметра фигурируют при этом 0,2 микрозиверта и 0,02 миллирентгена - то есть 200 мкр/ч. Как было показано выше, по сравнению с Рамсаром, Кералой и бразильскими пляжами - это несколько бледный результат. Не меньший ужас у общественности вызывают и особо крупные сазаны, водящиеся в Чагане - однако увеличение размеров живности в данном случае объясняется вполне естественными причинами. Впрочем, это не мешает феерическим публикациям с рассказами об охотящихся на купальщиков озёрных монстрах и рассказам "очевидцев" о "кузнечиках размером с сигаретную пачку".

Примерно то же самое можно было наблюдать и на атолле Бикини, где американцы взорвали 15-ти мегатонный боеприпас (впрочем, "чистый" однофазный). "Спустя четыре года после испытаний водородной бомбы на атолле Бикини, ученые, исследовавшие полуторакилометровый кратер, образовавшийся после взрыва, обнаружили под водой совершенно не то, что предполагали увидеть: вместо безжизненного пространства в кратере цвели большие кораллы высотой 1 м и диаметром ствола около 30 см, плавало множество рыбы - подводная экосистема оказалась полностью восстановленной" . Иными словами, перспектива жизни в радиоактивной пустыне с отравленной на многие годы почвой и водой человечеству не грозит даже в худшем случае.

В целом же однократное уничтожение человечества и тем более всех форм жизни на Земле с помощью ядерного оружия технически невозможно. При этом одинаково опасными являются и представления о "достаточности" нескольких ядерных зарядов для нанесения противнику неприемлемого ущерба, и миф о "бесполезности" для агрессора подвергшейся ядерной атаке территории, и легенда о невозможности ядерной войны как таковой из-за неизбежности глобальной катастрофы даже в том случае, если ответный ядерный удар окажется слабым . Победа над не располагающим ядерным паритетом и достаточным количеством ядерного оружия противником возможна - без глобальной катастрофы и с существенной выгодой.

В начале XX века благодаря усилиям Альберта Эйнштейна человечество впервые узнало о том, что на атомном уровне из небольшого количества вещества при определенных условиях можно получить огромное количество энергии. В 30-е годы работу в этом направлении продолжили немецкий физик-ядерщик Отто Хан, англичанин Роберт Фриш и француз Жолио-Кюри. Именно им удалось на практике отследить результаты деления ядер атомов радиоактивных химических элементов. Смоделированный в лабораториях процесс цепной реакции подтвердил теорию Эйнштейна о способности вещества в малых количествах выделять большое количество энергии. В таких условиях рождалась физика ядерного взрыва – наука, поставившая под сомнение возможность дальнейшего существования земной цивилизации.

Рождение ядерного оружия

Еще в 1939 году французу Жолио-Кюри стало понятно, что воздействие на ядра урана в определенных условиях может привести к взрывной реакции огромной мощности. В результате цепной ядерной реакции начинается спонтанное экспоненциальное деление ядер урана, происходит выделение энергии в огромном количестве. В одно мгновение радиоактивное вещество взрывалось, при этом образующийся взрыв обладал огромным поражающим эффектом. В результате опытов стало ясно, что уран (U235) можно превратить из химического элемента в мощную взрывчатку.

В мирных целях, при работе ядерного реактора, процесс ядерного деления радиоактивных компонентов носит спокойный и контролируемый характер. При ядерном взрыве основным отличием является то, что колоссальный объем энергии выделяется мгновенно и это продолжается до тех пор, пока не иссякнет запас радиоактивной взрывчатки. Впервые человек узнал о боевых возможностях новой взрывчатки 16 июля 1945 года. В то время, когда в Потсдаме проходила заключительная встреча Глав государств победителей войны с Германией, на полигоне в Аламогордо штата Нью-Мексико состоялось первое испытание атомного боевого заряда. Параметры первого ядерного взрыва были достаточно скромными. Мощность атомного заряда в тротиловом эквиваленте равнялась массе тринитротолуола в 21 килотонну, однако сила взрыва и его воздействие на окружающие объекты произвели на всех, кто наблюдал за испытаниями, неизгладимое впечатление.

Взрыв первой атомной бомбы

Сначала все увидели яркую светящуюся точку, которую было видно на расстоянии 290 км. от места проведения испытаний. При этом звук от взрыва был слышен в радиусе 160 км. На том месте, где было установлено ядерное взрывное устройство, образовался огромный кратер. Воронка от ядерного взрыва достигала глубины более 20 метров, имея внешний диаметр 70 м. На территории полигона в радиусе 300-400 метров от эпицентра поверхность земли представляла собой безжизненную лунную поверхность.

Интересно привести зафиксированные впечатления участников первого испытания атомной бомбы. «Окружающий воздух стал плотнее, мгновенно поднялась его температура. Буквально через минуту округой прокатилась огромной силы ударная волна. В точке нахождения заряда образуется огромный огненный шар, после чего на его месте стало формироваться облако ядерного взрыва грибовидной формы. Столб дыма и пыли, увенчанный массивной головой ядерного гриба, поднялся на высоту 12 км. Всех присутствующих в укрытие поражали масштабы взрыва. Никто не мог себе представить, с какой мощью и силой мы столкнулись», — писал в последствие руководитель Манхэттенского проекта Лесли Гровз.

Никто ни до, ни после не имел в своем распоряжении оружия такой огромной мощи. Это при том, что на тот момент ученые и военные еще не имели представление обо всех поражающих факторах нового оружия. Брались во внимание только видимые основные поражающие факторы ядерного взрыва, такие как:

  • ударная волна ядерного взрыва;
  • световое и тепловое излучение ядерного взрыва.

О том, что убийственными для всего живого является проникающая радиация и последующее радиоактивное заражение при ядерном взрыве, тогда еще не имели четкого представления. Оказалось, что именно эти два фактора после ядерного взрыва станут для человека впоследствии наиболее опасными. Зона полного разрушения и опустошение достаточно мала по площади в сравнении с зоной заражения местности продуктами радиационного распада. Зараженная территория может иметь площадь в сотни километров. К облучению, полученному в первые минуты после взрыва, и к уровню радиации впоследствии добавляется заражение обширных территорий радиационными осадками. Масштабы катастрофы становятся апокалиптическими.

Только потом, значительно позже, когда атомные бомбы были использованы в военных целях, стало ясно, насколько мощным является новое оружие и насколько тяжелыми для людей окажутся последствия применения ядерной бомбы.

Механизм атомного заряда и принцип действия

Если не вдаваться в подробные описания и технологию создания атомной бомбы, кратко описать ядерный заряд можно буквально тремя фразами:

  • имеется докритическая масса радиоактивного вещества (уран U235 или плутоний Pu239);
  • создание определенных условий для начала цепной реакции деления ядер радиоактивных элементов (детонация);
  • создание критической массы делящегося вещества.

Весь механизм можно изобразить на простом и понятном рисунке, где все части и детали находятся в сильном и тесном взаимодействии друг с другом. В результате подрыва химического или электрического детонатора, запускается детонационная сферическая волна, сжимающая делящееся вещество до критической массы. Ядерный заряд представляет собой многослойную конструкцию. Уран или плутоний используется в качестве основной взрывчатки. Детонатором может служить определенное количество тротила или гексогена. Далее процесс сжатия приобретает неуправляемый характер.

Скорость протекающих процессов огромна и сравнима со скоростью света. Промежуток времени от начала детонации до запуска необратимой цепной реакции занимает не более 10-8 с. Другими словами, чтобы привести в действие 1 кг обогащенного урана, потребуется всего 10-7 секунд. Этой величиной обозначается время ядерного взрыва. С аналогичной скоростью протекает реакция термоядерного синтеза, лежащего в основе термоядерной бомбы с той разницей, что ядерный заряд приводит в действие еще более мощный — термоядерный заряд. Термоядерная бомба имеет другой принцип действия. Здесь мы имеем дело с реакцией синтеза легких элементов в более тяжелые, в результате которых опять же выделяется огромное количество энергии.

В процессе деления ядер урана или плутония возникает огромное количество энергии. В центре ядерного взрыва температура составляет 107 Кельвина. В таких условиях возникает колоссальное давление — 1000 атм. Атомы делящегося вещества превращаются в плазму, которая и становится главным результатом цепной реакции. Во время аварии на 4-м реакторе Чернобыльской АЭС ядерного взрыва не было, так как деление радиоактивного топлива осуществлялось медленно и сопровождалось только интенсивным выделением тепла.

Высокая скорость происходящих внутри заряда процессов приводит к стремительному скачку температуры и росту давления. Именно эти составляющие формируют характер, факторы и мощность ядерного взрыва.

Виды и типы ядерных взрывов

Запущенная цепная реакция уже не может быть остановлена. В тысячные доли секунды ядерный заряд, состоящий из радиоактивных элементов, превращается в сгусток плазмы, разрываемый высоким давлением на части. Начинается последовательная цепочка целого ряда других факторов, оказывающих поражающий эффект на окружающую среду, объекты инфраструктуры и живые организмы. Разница в наносимом ущербе заключается лишь в том, что маленькая ядерная бомба (10-30 килотонн) влечет за собой меньший масштаб разрушений и менее тяжелые последствия, чем приносит большой ядерный взрыв мощностью в 100 более мегатонн.

Поражающие факторы зависят не только от мощности заряда. Для оценки последствий важны условия подрыва ядерного боеприпаса, какой в данном случае наблюдается тип ядерного взрыва. Подрыв заряда может быть осуществлен на поверхности земли, под землей или под водой, соответственно с условиями применения имеем дело со следующими видами:

  • воздушные ядерные взрывы, осуществляемые на определенных высотах над поверхностью земли;
  • высотные взрывы, осуществляемые в атмосфере планеты, на высотах свыше 10 км;
  • наземные (надводные) ядерные взрывы, осуществляемые непосредственно над поверхностью земли или над водной гладью;
  • подземные или подводные взрывы, проводимые в поверхностной толще земной коры или под водой, на определенной глубине.

В каждом отдельном случае определенные поражающие факторы имеют свою силу, интенсивность и особенности действия, приводящие к определенным результатам. В одном случае происходит точечное уничтожение цели с минимальными разрушениями и радиоактивным заражением территории. В других случаях приходится иметь дело с масштабным опустошением местности и разрушением объектов, происходит мгновенное уничтожение всего живого, наблюдается сильное радиоактивное заражение обширных территорий.

Воздушный ядерный взрыв, к примеру, отличается от наземного способа подрыва тем, что огненный шар не соприкасается с поверхностью земли. При таком взрыве пыль и другие мелкие фрагменты соединяются в пылевой столб, существующий отдельно от облака взрыва. Соответственно от высоты подрыва зависит и площадь поражения. Такие взрывы могут быть высокими и низкими.

Первые испытания атомных боевых зарядов и в США и в СССР были преимущественно трех видов, наземными, воздушными и подводными. Только после того, как вступил в силу Договор об ограничении ядерных испытаний, ядерные взрывы в СССР, в США, во Франции, в Китае и в Великобритании стали осуществляться только под землей. Это позволило минимизировать загрязнение окружающей среды радиоактивными продуктами, уменьшить площадь зон отчуждения, которые возникали рядом с военными полигонами.

Самый мощный ядерный взрыв, осуществленный за всю историю ядерных испытаний, состоялся 30 октября 1961 года в Советском Союзе. Бомба, общим весом 26 тонн и мощностью 53 мегатонн, была сброшена в районе архипелага Новая Земля с борта стратегического бомбардировщика Ту-95. Это пример типичного высокого воздушного взрыва, так как подрыв заряда произошел на высоте 4 км.

Следует отметить, что подрыв ядерного боезаряда в воздухе отличается сильным воздействием светового излучения и проникающей радиацией. Вспышку ядерного взрыва хорошо видно за десятки и сотни километров от эпицентра. Помимо мощного светового излучения и сильной ударной волны, расходящейся вокруг на 3600, воздушный взрыв становится источником сильнейшего электромагнитного возмущения. Образуемый при воздушном ядерном взрыве электромагнитный импульс в радиусе 100-500 км. способен вывести из строя всю наземную электротехническую инфраструктуру и электронику.

Ярким примером низкого воздушного взрыва стала атомная бомбардировка в августе 1945 года японских городов Хиросимы и Нагасаки. Бомбы «Толстяк» и «Малыш» сработали на высоте полукилометра, тем самым накрыв ядерным взрывом практически всю территорию этих городов. Большинство жителей Хиросимы погибли в первые секунды после взрыва, в результате воздействия интенсивного светового, теплового и гамма-излучения. Ударная волна полностью разрушила городские постройки. В случае с бомбардировкой города Нагасаки эффект от взрыва был ослаблен особенностями рельефа. Холмистая местность позволила некоторым районам города избежать прямого действия световых лучей, снизила силу удара взрывной волны. Зато во время такого взрыва наблюдалось обширное радиоактивное заражение местности, повлекшее в дальнейшем тяжелые последствия для населения уничтоженного города.

Низкие и высокие воздушные взрывы — наиболее распространенное современное средство оружия массового уничтожения. Такие заряды применяются для уничтожения скопления войск и техники, городов и объектов наземной инфраструктуры.

Высотный ядерный взрыв отличается способом применения и характером действия. Подрыв ядерного боеприпаса осуществляется на высоте более 10 км, в стратосфере. При подобном взрыве высоко в небе наблюдается яркая солнцеобразная вспышка большого диаметра. Вместо облаков пыли и дыма, на месте взрыва вскоре образуется облако, состоящее из испарившихся под воздействием высоких температур молекул водорода, углекислого газа и азота.

В данном случае основным поражающими факторами являются ударная волна, световое излучение, проникающая радиация и ЭМИ ядерного взрыва. Чем выше высота подрыва заряда, тем меньше сила ударной волны. Радиация и световое излучение, наоборот, с ростом высоты только усиливаются. Ввиду отсутствия значительного перемещения воздушных масс на больших высотах, радиоактивное заражение территорий в данном случае практически сводится к нулю. Взрывы на больших высотах, сделанные в пределах ионосферы, нарушают распространение радиоволн в ультразвуковом диапазоне.

Такие взрывы, в основном направлены на уничтожение высоколетящих целей. Это могут быть разведывательные самолеты, крылатые ракеты, боеголовки стратегических ракет, искусственные спутники и другие космические средства нападения.

Наземный ядерный взрыв — это совершенно иное явление в военной тактике и стратегии. Здесь поражению подвергается непосредственно определенная область поверхности земли. Подрыв боезаряда может быть осуществлен над объектом или над водой. Первые испытания атомного оружия в США и в СССР происходили именно в таком виде.

Отличительная особенность этого вида ядерного взрыв — наличие ярко выраженного грибовидного облака, которое формируется за счет огромных объемов поднятых взрывом частиц грунта и породы. В самый первый момент на месте взрыва образуется светящаяся полусфера, нижним краем касающаяся поверхности земли. При контактном подрыве в эпицентре взрыва, где взорвался ядерный заряд, образуется воронка. Глубина и диаметр воронки зависит от мощности самого взрыва. При использовании небольших тактических боеприпасов диаметр воронки может достигать двух, трех десятков метров. При взрыве ядерной бомбы большой мощностью размеры кратера нередко достигают сотни метров.

Наличие мощного грязево-пылевого облака способствует тому, что основная масса радиоактивных продуктов взрыва обратно выпадает на поверхность, делая ее полностью зараженной. Более мелкие частицы пыли попадают в приземной слой атмосферы и вместе с воздушными массами разлетаются на обширные расстояния. Если на поверхности земли взорвать атомный заряд, радиоактивный след от произведенного наземного взрыва, может протянуться на сотни и тысячи километров. Во время аварии на Чернобыльской АЭС, радиоактивные частицы, попавшие в атмосферу, выпали вместе с осадками на территории Скандинавских стран, которые находятся в 1000 км от места катастрофы.

Наземные взрывы могут осуществляться для уничтожения и разрушения объектов большой прочности. Подобные взрывы могут быть использованы и в том случае, если преследуется цель создать обширную зону радиоактивного заражения местности. В данном случае действуют все пять поражающих факторов ядерного взрыва. Следом за термодинамическим ударом и световым излучением в дело вступает электромагнитный импульс. Довершает уничтожение объекта и живой силы в радиусе действия ударная волна и проникающая радиация. Напоследок остается радиоактивное заражение. В отличие от наземного способа подрыва, надводный ядерный взрыв поднимает в воздух огромные массы воды, как в жидком виде, так и в парообразном состоянии. Разрушительный эффект достигается за счет удара воздушной ударной волны и большим волнением, образующимся в результате взрыва. Поднятая в воздух вода препятствует распространению светового излучения и проникающей радиации. Ввиду того, что частицы воды намного тяжелее и являются естественным нейтрализатором активности элементов, интенсивность распространения радиоактивных частиц в воздушном пространстве незначительна.

Подземный взрыв ядерного боеприпаса осуществляется на определенной глубине. В отличие от наземных взрывов здесь отсутствует светящаяся область. Всю огромную силу удара берет на себя земная порода. Ударная волна расходится в толще земли, вызывая локальное землетрясение. Огромное давление, создаваемое в процессе взрыва, образует столб обрушения грунта, уходящий на большую глубину. В результате проседания породы на месте взрыва образуется воронка, размеры которой зависят от мощности заряда и глубины взрыва.

Такой взрыв не сопровождается грибовидным облаком. Столб пыли, поднявшийся в месте подрыва заряда, имеет высоту всего в несколько десятков метров. Ударная волна, преобразуемая в сейсмические волны, и местное поверхностное радиоактивное заражение являются главными поражающими факторами при проведении таких взрывов. Как правило, такой вид подрыва ядерного заряда имеет экономическое и прикладное значение. На сегодняшний день большинство ядерных испытаний осуществляется подземным способом. В 70-80 годы подобным образом решали народнохозяйственные задачи, используя колоссальную энергию ядерного взрыва для разрушения горных массивов и образования искусственных водоемов.

На карте ядерных полигонов в Семипалатинске (ныне Республика Казахстан) и в штате Невада (США) имеется огромное количество кратеров, следов проведения подземных ядерных испытаний.

Подводный подрыв ядерного заряда осуществляется на заданной глубине. В данном случае во время взрыва световая вспышка отсутствует. На поверхности воды в месте подрыва возникает водяной столб высотой 200-500 метров, который венчает облако брызг и пара. Образование ударной волны происходит сразу после взрыва, вызывая возмущения в толще воды. Основным поражающим фактором взрыва является ударная волна, трансформирующаяся в волны большой высоты. При взрыве зарядов большой мощности высота волн может достигать 100 и более метров. В дальнейшем на месте взрыва и на прилегающей территории наблюдается сильное радиоактивное заражение.

Способы защиты от поражающих факторов ядерного взрыва

В результате взрывной реакции ядерного заряда образуется огромное количество тепловой и световой энергии, способной не только разрушить и уничтожить неживые объекты, но убить все живое на значительной площади. В эпицентре взрыва и в непосредственной близости от него в результате интенсивного воздействия проникающей радиации, светового, теплового излучения и ударной волны погибает все живое, уничтожается военная техника, разрушаются здания и сооружения. С удалением от эпицентра взрыва и с течением времени сила поражающих факторов уменьшается, уступая место последнему губительному фактору — радиоактивному заражению.

Искать спасение тем, кто попал в эпицентр ядерного апокалипсиса, бесполезно. Здесь не спасет ни крепкое бомбоубежище, ни средства личной защиты. Травмы и ожоги, полученные человеком в таких ситуациях, несовместимы с жизнью. Разрушения объектов инфраструктуры носят тотальный характер и не подлежат восстановлению. В свою очередь тем, кто оказался на значительном расстоянии от места взрыва, можно рассчитывать на спасение, используя определенные навыки и специальные способы защиты.

Основной поражающий фактор при ядерном взрыве — это ударная волна. Образующаяся в эпицентре область высокого давления оказывает воздействие на воздушную массу, создавая ударную волну, которая распространяется во все стороны со сверхзвуковой скоростью.

Скорость распространения взрывной волны следующая:

  • на ровной местности 1000 метров от эпицентра взрыва ударная волна преодолевает за 2 сек.;
  • на расстоянии 2000 м. от эпицентра ударная волна вас настигнет через 5 секунд;
  • находясь от взрыва на дистанции 3 км, ударную волну следует ожидать через 8 секунд.

После прохождения взрывной волны возникает область низкого давления. Стремясь заполнить разреженное пространство, воздух идет в обратном направлении. Создаваемый вакуумный эффект вызывает очередную волну разрушений. Увидев вспышку, до прихода взрывной волны можно попытаться найти укрытие, уменьшив последствия воздействия ударной волны.

Световое и тепловое излучение на большом расстоянии от эпицентра взрыва теряют свою силу, поэтому если человек сумел укрыться при виде вспышки, можно рассчитывать на спасение. Гораздо страшнее проникающая радиация, представляющая собой стремительный поток гамма лучей и нейтронов, которые распространяются со скоростью света из светящейся области взрыва. Самое мощное воздействие проникающей радиации происходит в первые секунды после взрыва. Находясь в убежище или в укрытии, высока вероятность избежать прямого попадания смертоносного гамма-излучения. Проникающая радиация наносит тяжелейшие поражения живым организмам, вызывая лучевую болезнь.

Если все предыдущие перечисленные поражающие факторы ядерного взрыва носят кратковременный характер, то радиоактивное заражение является самым коварным и опасным фактором. Его губительное действие на организм человека происходит постепенно, с течением времени. Величина остаточной радиации и интенсивность радиоактивного заражения зависит от мощности взрыва, условий местности и климатических факторов. Радиоактивные продукты взрыва, смешиваясь с пылью, мелкими фрагментами и осколками попадают в приземный воздушный слой, после чего вместе с осадками или самостоятельно выпадают на поверхность земли. Радиационный фон в зоне применения ядерного оружия в сотни раз превышает естественный радиационный фон, создавая угрозу всему живому. Находясь на территории, подвергнувшейся ядерному удару, следует избегать контакта с любыми предметами. Средства индивидуальной защиты и дозиметр позволят снизить вероятность радиоактивного заражения.

Времена сейчас неспокойные, всё чаще звучат разговоры о новой Холодной войне. Нам хочется верить, что до Третьей мировой дело не дойдёт, но теорию решили подтянуть. Итак, мы разобрали ядерный взрыв на пять поражающих факторов и придумали, как выжить от каждого из них. Готов? Вспышка слева!

1. Ударная волна

Большая часть разрушений от ядерного взрыва получится от ударной волны, несущейся со сверхзвуковой скоростью (в атмосфере - более 350 м/с). Пока никто не видел, мы взяли термоядерную боеголовку W88 мощностью 475 килотонн, состоящую на США, и выяснили, что при ее взрыве в радиусе 3 км от эпицентра не останется ровным счетом ничего и никого; на расстоянии 4 км постройки будут основательно разгромлены, а за 5 км и дальше разрушения будут средними и слабыми. Шансы выжить появятся, только если ты будешь находиться минимум за 5 км от эпицентра (и то если успеешь спрятаться в подвале). Чтобы самостоятельно рассчитать радиусы поражения от взрыва различной мощности, вы можете воспользоваться нашим симулятором .

2. Световое излучение

Вызывает воспламенение горючих материалов. Но даже оказавшись вдалеке от газовых станций и складов с «Моментом», ты рискуешь получить ожоги и поражение глаз. Поэтому спрячься за каким-нибудь препятствием вроде огромной каменной глыбы, накройся с головой листом металла или другой негорючей штукой и закрой глаза. После взрыва ядерной бомбы W88 на расстоянии 5 км тебя, возможно, не убьет ударной волной, но световой поток может вызвать ожоги второй степени. Это те, которые с противными пузырями на коже. На расстоянии 6 км есть риск получить ожоги первой степени: краснота, припухлость, отек кожи - словом, ничего серьезного. Но самое приятное случится, если тебя угораздит оказаться за 7 км от эпицентра: ровный загар и выживание гарантировано.

3. Электромагнитный импульс

Если ты не киборг, электромагнитный импульс тебе не страшен: он выводит из строя исключительно электрическую и электронную аппаратуру. Просто знай, что, если на горизонте показался ядерный гриб, делать селфи на его фоне бесполезно. Радиус действия импульса зависит от высоты взрыва и окружающей обстановки и колеблется от 3 до 115 км.

4. Проникающая радиация

Несмотря на такое жуткое название, штука веселая и безобидная. Она уничтожает все живое только в радиусе в 2–3 км от эпицент-ра, где тебя в любом случае убьет ударной волной.

5. Радиоактивное заражение

Самая подлая часть ядерного взрыва. Представляет собой огромное облако, состоящее из поднятых в воздух взрывом радиоактивных частиц. Территория распространения радиоактивного заражения сильно зависит от природных факторов, в первую очередь от направления ветра. Если взорвать W88 при ветре со скоростью 5 км/ч, радиация будет опасной на расстоянии до 130 км от эпицент-ра по направлению ветра (против ветра ядерное заражение не распространяется дальше 3 км). Скорость смерти от лучевой болезни зависит от отдаленности эпицентра, погоды, местности, особенностей твоего организма и кучи других факторов. Зараженные радиацией люди могут как мгновенно умереть, так и жить годами. Как это произойдет - зависит исключительно от личного везения и индивидуальных характеристик организма, в частности от силы иммунитета. Также больным лучевой болезнью прописывают определенные препараты и питание для вывода радионуклидов из организма.

Помните, что вооружен тот, кто предупрежден, а выживет тот, кто приготовит сани летом. Сегодня мы в прямом смысле живем на пороге , которая уже началась и в любой момент можете перейти в самую горячую фазу с применением массового поражения. Чтобы уберечь себя и близких, вы должны заблаговременно подумать, где вы сможете спрятаться и пережить атомную бомбардировку своего населенного пункта.

Какой радиус действия у атомной и водородной бомбы? и получил лучший ответ

Ответ от Razor[новичек]
Максимальный радиус поражаения у атомной и тем более ядерной бомбы определить однозначно очень тяжело. Всего у ядерной бомбы несколько поражающих факторов:
Проникающая радиация - поток жесткого гамма излучения. Его радиус очень велик - от километров до нескльких десятков километров. В радиусе нескольких километров все живое получает сильнейшую дозу облучения.
Ударная волна - радиус поражения от полукилометра (зона сплошных разрушений) , и заканчивая километров (вылетают стёкла) и вплоть до тысяч километров (заук взрыва) . В редких случаях (50МТ бомба "кузькина мама" Хрущёва) ударная волна огибает земной шар.... 3 раза. Хотя на таких расстояних не приносит разрушений.
Остаточная радиация - радиус зависит от направления и силы ветра. Прще говоря это тот участок откуда выпадет радиоактивный дождь (снег, пыль, туман) - остатки грибообразного облака.
ЭМИ - электромагнитный импульс. Сжигает всю электронику. Радиус десятки километров.
Световое излучение - сильный поток света, который сжигает все на что падает. Зона поражения завист от силы взрыва и погоды. Обычно несколько десятков километров - в ределах прямой видимости. И даже на большом расстоянии может сжечь сетчатку глаза. К примеру в Хиросиме на расстоянии 9 км обугливалась кора деревьев. В самом городе плвились бутылки и мгновенно сгорали люди. А там мощность взрыва была всего лишь 12-16 килотонн (16000 тонн) в тротиловом экв.
Во время легендарного взрыва "Ивана" 50 МТ (50 000 000 тонн тротил. экв.) испарялись камни.
Там было все масшабнее:
Высоат "гриба" - 64 км.
Радиус "активной зоны" (температура более миллиона гразусов) 4,5 км.
Разрушения от ударной волны - 400 км. от центра.
Световой импульс (воздействие) - 270 км.
От острова над которым был подорван заряд остался ровный "вылизанный" каменный "каток".
Это был самый стильный рукотворный взрыв.
А ведь тогда хотели взорвать не 50 МТ а все 100 МТ.. . Боюсь пердставить что было бы.. .
Так что радиус всегда огромен, но сильно зависит от мощности.

Ответ от Boy bezpravil.... [новичек]
1 килотонна поражает от 200 метров до 500 метров максимум. В 1й килотонне 1000 тон тротиловом эквиваленте. 1 Мегатонна 10 000 то тротиловом эквиваленте. Радиус 1й Мегатонны от 1 км средний взрыв сверхбольшой 2км в радиусе поражение. Тополь-М имеет мощность в достоинством 550 Кт. Это 0.55 Мт. Радиус поражение 165км. С учётом всех помех. Сверхбольшой взрыв 550 Кт 275 км в радиусе поражения. Если 300 Мт. То сверхмалый взрыв 200 км полное уничтожения без шансов жизнь никому. Разрушения 100% сверхбольшой взрыв до 1000 км в радиусе поражения. Это максимально. Не согласен тем что 50 Мегатонн поражает до 400 км максимум 100 км если применили сверхбольшой взрыв.


Ответ от Алексей Касьянов [гуру]
дык от мощности зависит

Какой радиус действия у атомной и водородной бомбы? и получил лучший ответ

Ответ от Razor[новичек]
Максимальный радиус поражаения у атомной и тем более ядерной бомбы определить однозначно очень тяжело. Всего у ядерной бомбы несколько поражающих факторов:
Проникающая радиация - поток жесткого гамма излучения. Его радиус очень велик - от километров до нескльких десятков километров. В радиусе нескольких километров все живое получает сильнейшую дозу облучения.
Ударная волна - радиус поражения от полукилометра (зона сплошных разрушений) , и заканчивая километров (вылетают стёкла) и вплоть до тысяч километров (заук взрыва) . В редких случаях (50МТ бомба "кузькина мама" Хрущёва) ударная волна огибает земной шар.... 3 раза. Хотя на таких расстояних не приносит разрушений.
Остаточная радиация - радиус зависит от направления и силы ветра. Прще говоря это тот участок откуда выпадет радиоактивный дождь (снег, пыль, туман) - остатки грибообразного облака.
ЭМИ - электромагнитный импульс. Сжигает всю электронику. Радиус десятки километров.
Световое излучение - сильный поток света, который сжигает все на что падает. Зона поражения завист от силы взрыва и погоды. Обычно несколько десятков километров - в ределах прямой видимости. И даже на большом расстоянии может сжечь сетчатку глаза. К примеру в Хиросиме на расстоянии 9 км обугливалась кора деревьев. В самом городе плвились бутылки и мгновенно сгорали люди. А там мощность взрыва была всего лишь 12-16 килотонн (16000 тонн) в тротиловом экв.
Во время легендарного взрыва "Ивана" 50 МТ (50 000 000 тонн тротил. экв.) испарялись камни.
Там было все масшабнее:
Высоат "гриба" - 64 км.
Радиус "активной зоны" (температура более миллиона гразусов) 4,5 км.
Разрушения от ударной волны - 400 км. от центра.
Световой импульс (воздействие) - 270 км.
От острова над которым был подорван заряд остался ровный "вылизанный" каменный "каток".
Это был самый стильный рукотворный взрыв.
А ведь тогда хотели взорвать не 50 МТ а все 100 МТ.. . Боюсь пердставить что было бы.. .
Так что радиус всегда огромен, но сильно зависит от мощности.

Ответ от Boy bezpravil.... [новичек]
1 килотонна поражает от 200 метров до 500 метров максимум. В 1й килотонне 1000 тон тротиловом эквиваленте. 1 Мегатонна 10 000 то тротиловом эквиваленте. Радиус 1й Мегатонны от 1 км средний взрыв сверхбольшой 2км в радиусе поражение. Тополь-М имеет мощность в достоинством 550 Кт. Это 0.55 Мт. Радиус поражение 165км. С учётом всех помех. Сверхбольшой взрыв 550 Кт 275 км в радиусе поражения. Если 300 Мт. То сверхмалый взрыв 200 км полное уничтожения без шансов жизнь никому. Разрушения 100% сверхбольшой взрыв до 1000 км в радиусе поражения. Это максимально. Не согласен тем что 50 Мегатонн поражает до 400 км максимум 100 км если применили сверхбольшой взрыв.


Ответ от Алексей Касьянов [гуру]
дык от мощности зависит