Аппроксимация нелинейных функций по заданным формулам. Учебное пособие по Математическим методам в географии

Линейная, особенно линейная полиномиальная, аппроксимация часто не соответствует характеру функции. Например, многочлен высокой степени быстро растет при поэтому даже несложную функцию многочлен плохо аппроксимирует на большом отрезке. Поскольку аппроксимация проводится в широком интервале изменения аргумента, использование нелинейной зависимости от коэффициентов здесь ещё выгодней, чем при интерполяции.

На практике используют два вида зависимости. Один - квазилинейная зависимость, сводящаяся выравнивающей заменой переменных к линейной, которая подробно изучена в предыдущих пунктах. Этот способ очень эффективен и часто используется при обработке эксперимента, ибо априорные сведения о физике процесса помогают найти хорошую замену переменных. Надо только иметь в виду, что приближение, наилучшее в новых переменных, не будет наилучшим в смысле скалярного произведения в старых переменных. Поэтому на выбор веса в новых переменных надо обращать особое внимание.

Классический пример - задача о радиоактивном распаде облученного образца, в которой удобны переменные и t, где - скорость распада. В этих переменных кривая обычно аппроксимируется ломаной, звенья которой соответствуют распаду все более долгоживущих членов радиоактивного ряда.

Другой употребительный вид зависимости от коэффициентов - дробно-линейная, когда аппроксимирующая функция рациональна:

Нередко используется и отношение обобщенных многочленов. Такая аппроксимация позволяет передать полюсы функции - им соответствуют нули знаменателя требуемой кратности. Зачастую можно воспроизвести асимптотическое поведение при за счет соответствующего выбора величины например, если , то надо положить . При этом сами можно брать достаточно большими, чтобы располагать многими коэффициентами аппроксимации.

Однако квадрат погрешности уже не будет квадратичной функцией коэффициентов, так что найти коэффициенты рациональной функции нелегко. Можно по аналогии со среднеквадратичной аппроксимацией многочленами выдвинуть гипотезу, что погрешность имеет на число нулей, не меньшее числа свободных коэффициентов (сравните с замечанием 3 в п. 2). Тогда задача сводится к лагранжевой интерполяции по этим нулям и коэффициенты находятся из системы линейных уравнений:

Разумеется, точное положение нулей неизвестно; их выбирают произвольно, обычно равномерно распределяя на отрезке . Этот способ называют методом выбранных точек. Полученное этим методом приближение вовсе не будет наилучшим.

Кроме того, метод выбранных точек неразумен, как и всякая интерполяция, если имеют заметную погрешность.

Наилучшее приближение можно найти методом итерированного веса. Заметим, что задача

легко решается: стоящее слева выражение есть квадратичная функция коэффициентов и дифференцирование по ним приводит к линейной системе для определения коэффициентов, сходной с (38). Новая задача отличается от исходной по существу тем, что вместо веса используется другой вес поэтому ее решение не является наилучшим приближением. Запишем исходную задачу в новой форме:

и будем решать ее простым итерационным процессом

за нулевое приближение можно взять . На каждой итерации вес известен по предыдущей итерации, поэтому коэффициенты легко находятся из условия минимума квадратичной формы. Практика показывает, что коэффициенты наилучшего приближения слабо зависят от выбора веса, поэтому обычно итерации сходятся быстро.

а) Рассмотрим некоторые примеры аппроксимации рациональной функцией. Положим

заменяя два первых члена ряда дробью, получим . Эта несложная формула обеспечивает точность при и очень удобна для оценок.

б) В теории вероятностей важную роль играет интеграл ошибок для которого известны разложения в ряды:

Первый ряд абсолютно сходится, но при сходимость очень медленная; второй ряд сходится асимптотически при больших значениях . Заменяя первые члены каждого ряда дробями, получим

В указанных диапазонах изменения аргумента погрешность первой формулы не превышает 0,4%, а погрешность второй формулы -2,4%. Таким образом, точность этих аппроксимаций вполне достаточна для многих 1 практических приложений.

в) Положим при . Эта функция монотонна, причем при Легко построить дробь

(Обратите внимание на дополнительный раздел от 04.06.2017 в конце статьи.)

Учет и контроль! Те, кому за 40 должны хорошо помнить этот лозунг из эпохи построения социализма и коммунизма в нашей стране.

Но без хорошо налаженного учета невозможно эффективное функционирование ни страны, ни области, ни предприятия, ни домашнего хозяйства при любой общественно-экономической формации общества! Для составления прогнозов и планов деятельности и развития необходимы исходные данные. Где их брать? Только один достоверный источник – это ваши статистические учетные данные предыдущих периодов времени.

Учитывать результаты своей деятельности, собирать и записывать информацию, обрабатывать и анализировать данные, применять результаты анализа для принятия правильных решений в будущем должен, в моем понимании, каждый здравомыслящий человек. Это есть ничто иное, как накопление и рациональное использование своего жизненного опыта. Если не вести учет важных данных, то вы через определенный период времени их забудете и, начав заниматься этими вопросами вновь, вы опять наделаете те же ошибки, что делали, когда впервые этим занимались.

«Мы, помню, 5 лет назад изготавливали до 1000 штук таких изделий в месяц, а сейчас и 700 еле-еле собираем!». Открываем статистику и видим, что 5 лет назад и 500 штук не изготавливали…

«Во сколько обходится километр пробега твоего автомобиля с учетом всех затрат?» Открываем статистику – 6 руб./км. Поездка на работу – 107 рублей. Дешевле, чем на такси (180 рублей) более чем в полтора раза. А бывали времена, когда на такси было дешевле…

«Сколько времени требуется для изготовления металлоконструкций уголковой башни связи высотой 50 м?» Открываем статистику – и через 5 минут готов ответ…

«Сколько будет стоить ремонт комнаты в квартире?» Поднимаем старые записи, делаем поправку на инфляцию за прошедшие годы, учитываем, что в прошлый раз купили материалы на 10% дешевле рыночной цены и – ориентировочную стоимость мы уже знаем…

Ведя учет своей профессиональной деятельности, вы всегда будете готовы ответить на вопрос начальника: «Когда!!!???». Ведя учет домашнего хозяйства, легче спланировать расходы на крупные покупки, отдых и прочие расходы в будущем, приняв соответствующие меры по дополнительному заработку или по сокращению необязательных расходов сегодня.

В этой статье я на простом примере покажу, как можно обрабатывать собранные статистические данные в Excel для возможности дальнейшего использования при прогнозировании будущих периодов.

Аппроксимация в Excel статистических данных аналитической функцией.

Производственный участок изготавливает строительные металлоконструкции из листового и профильного металлопроката. Участок работает стабильно, заказы однотипные, численность рабочих колеблется незначительно. Есть данные о выпуске продукции за предыдущие 12 месяцев и о количестве переработанного в эти периоды времени металлопроката по группам: листы, двутавры, швеллеры, уголки, трубы круглые, профили прямоугольного сечения, круглый прокат. После предварительного анализа исходных данных возникло предположение, что суммарный месячный выпуск металлоконструкций существенно зависит от количества уголков в заказах. Проверим это предположение.

Прежде всего, несколько слов об аппроксимации. Мы будем искать закон – аналитическую функцию, то есть функцию, заданную уравнением, которое лучше других описывает зависимость общего выпуска металлоконструкций от количества уголкового проката в выполненных заказах. Это и есть аппроксимация, а найденное уравнение называется аппроксимирующей функцией для исходной функции, заданной в виде таблицы.

1. Включаем Excel и помещаем на лист таблицу с данными статистики.

2. Далее строим и форматируем точечную диаграмму, в которой по оси X задаем значения аргумента – количество переработанных уголков в тоннах. По оси Y откладываем значения исходной функции – общий выпуск металлоконструкций в месяц, заданные таблицей.

3. «Наводим» мышь на любую из точек на графике и щелчком правой кнопки вызываем контекстное меню (как говорит один мой хороший товарищ — работая в незнакомой программе, когда не знаешь, что делать, чаще щелкай правой кнопкой мыши…). В выпавшем меню выбираем «Добавить линию тренда…».

4. В появившемся окне «Линия тренда» на вкладке «Тип» выбираем «Линейная».

6. На графике появилась прямая линия, аппроксимирующая нашу табличную зависимость.

Мы видим кроме самой линии уравнение этой линии и, главное, мы видим значение параметра R 2 – величины достоверности аппроксимации! Чем ближе его значение к 1, тем наиболее точно выбранная функция аппроксимирует табличные данные!

7. Строим линии тренда, используя степенную, логарифмическую, экспоненциальную и полиномиальную аппроксимации по аналогии с тем, как мы строили линейную линию тренда.

Лучше всех из выбранных функций аппроксимирует наши данные полином второй степени, у него максимальный коэффициент достоверности R 2 .

Однако хочу вас предостеречь! Если вы возьмете полиномы более высоких степеней, то, возможно, получите еще лучшие результаты, но кривые будут иметь замысловатый вид…. Здесь важно понимать, что мы ищем функцию, которая имеет физический смысл. Что это означает? Это означает, что нам нужна аппроксимирующая функция, которая будет выдавать адекватные результаты не только внутри рассматриваемого диапазона значений X, но и за его пределами, то есть ответит на вопрос: «Какой будет выпуск металлоконструкций при количестве переработанных за месяц уголков меньше 45 и больше 168 тонн!» Поэтому я не рекомендую увлекаться полиномами высоких степеней, да и параболу (полином второй степени) выбирать осторожно!

Итак, нам необходимо выбрать функцию, которая не только хорошо интерполирует табличные данные в пределах диапазона значений X=45…168, но и допускает адекватную экстраполяцию за пределами этого диапазона. Я выбираю в данном случае логарифмическую функцию, хотя можно выбрать и линейную, как наиболее простую. В рассматриваемом примере при выборе линейной аппроксимации в excel ошибки будут больше, чем при выборе логарифмической, но не на много.

8. Удаляем все линии тренда с поля диаграммы, кроме логарифмической функции. Для этого щелкаем правой кнопкой мыши по ненужным линиям и в выпавшем контекстном меню выбираем «Очистить».

9. В завершении добавим к точкам табличных данных планки погрешностей. Для этого правой кнопкой мыши щелкаем на любой из точек на графике и в контекстном меню выбираем «Формат рядов данных…» и настраиваем данные на вкладке «Y-погрешности» так, как на рисунке ниже.

10. Затем щелкаем по любой из линий диапазонов погрешностей правой кнопкой мыши, выбираем в контекстном меню «Формат полос погрешностей…» и в окне «Формат планок погрешностей» на вкладке «Вид» настраиваем цвет и толщину линий.

Аналогичным образом форматируются любые другие объекты диаграммы в Excel !

Окончательный результат диаграммы представлен на следующем снимке экрана.

Итоги.

Результатом всех предыдущих действий стала полученная формула аппроксимирующей функции y=-172,01*ln (x)+1188,2. Зная ее, и количество уголков в месячном наборе работ, можно с высокой степенью вероятности (±4% — смотри планки погрешностей) спрогнозировать общий выпуск металлоконструкций за месяц! Например, если в плане на месяц 140 тонн уголков, то общий выпуск, скорее всего, при прочих равных составит 338±14 тонн.

Для повышения достоверности аппроксимации статистических данных должно быть много. Двенадцать пар значений – это маловато.

Из практики скажу, что хорошим результатом следует считать нахождение аппроксимирующей функции с коэффициентом достоверности R 2 >0,87. Отличный результат – при R 2 >0,94.

На практике бывает трудно выделить один самый главный определяющий фактор (в нашем примере – масса переработанных за месяц уголков), но если постараться, то в каждой конкретной задаче его всегда можно найти! Конечно, общий выпуск продукции за месяц реально зависит от сотни факторов, для учета которых необходимы существенные трудозатраты нормировщиков и других специалистов. Только результат все равно будет приблизительным! Так стоит ли нести затраты, если есть гораздо более дешевое математическое моделирование!

В этой статье я лишь прикоснулся к верхушке айсберга под названием сбор, обработка и практическое использование статистических данных. О том удалось, или нет, мне расшевелить ваш интерес к этой теме, надеюсь узнать из комментариев и рейтинга статьи в поисковиках.

Затронутый вопрос аппроксимации функции одной переменной имеет широкое практическое применение в разных сферах жизни. Но гораздо большее применение имеет решение задачи аппроксимации функции нескольких независимых переменных…. Об этом и не только читайте в следующих статьях на блоге.

Подписывайтесь на анонсы статей в окне, расположенном в конце каждой статьи или в окне вверху страницы.

Не забывайте подтверждать подписку кликом по ссылке в письме, которое придет к вам на указанную почту (может прийти в папку « Спам» )!!!

С интересом прочту Ваши комментарии, уважаемые читатели! Пишите!

P.S. (04.06.2017)

Высокоточная красивая замена табличных данных простым уравнением.

Вас не устраивают полученные точность аппроксимации (R 2 <0,95) или вид и набор функций, предлагаемые MS Excel?

Размеры выражения и форма линии аппроксимирующего полинома высокой степени не радует глаз?

Обращайтесь через страницу « » для получения более точного и компактного результата аппроксимации ваших табличных данных и для того, чтобы узнать простую методику решения задач высокоточной аппроксимации функцией одной переменной.

При использовании предлагаемого алгоритма действий найдена весьма компактная функция, обеспечивающая высочайшую точность аппроксимации: R 2 =0,9963!!!

  • Решение систем нелинейных и трансцендентных уравнений.
  • Системы нелинейных и трансцендентных уравнений. Решение уравнений в численном виде.
  • Численные методы решения задач

    Радиофизики и электроники

    (Учебное пособие)

    Воронеж 2009

    Учебное пособие подготовлено на кафедре электроники физического

    факультета Воронежского Госуниверситета.

    Рассматриваются методы решения задач, связанных с автоматизированным анализом электронных схем. Излагаются основные понятия теории графов. Приводится матрично-топологическая формулировка законов Кирхгофа. Описываются наиболее известные матрично-топологические методы: метод узловых потенциалов, метод контурных токов, метод дискретных моделей, гибридный метод, метод переменных состояний.

    1. Аппроксимация нелинейных характеристик. Интерполяция . 6

    1.1. Полиномы Ньютона и Лагранжа 6

    1.2. Сплайн-интерполяция 8

    1.3. Метод наименьших квадратов 9

    2. Системы алгебраических уравнений 28

    2.1. Cистемы линейных уравнений. Метод Гаусса. 28

    2.2. Разреженные системы уравнений. LU-факторизация. 36

    2.3. Решение нелинейных уравнений 37

    2.4. Решение систем нелинейных уравнений 40

    2.5. Дифференциальные уравнения. 44

    2. Методы поиска экстремума. Оптимизация. 28

    2.1. Методы поиска экстремума . 36

    2.2. Пассивный поиск 28

    2.3. Последовательный поиск 36

    2.4. Многомерная оптимизация 37

    Список литературы 47

    Аппроксимация нелинейных характеристик. Интерполяция.

    1.1. Полиномы Ньютона и Лагранжа.

    При решении многих задач возникает необходимость в замене функции f, о которой имеется неполная информация или форма которой слишком сложна, более простой и удобной функцией F, близкой в том или ином смысле к f, дающей её приближённое представление. Для аппроксимации (приближения) используются функции F, принадлежащие определённому классу, например, алгебраические полиномы заданной степени. Существует много разных вариантов задачи о приближении функции, зависящих от того, какие функции f аппроксимируются, какие функции F используются для аппроксимации, как понимается близость функций f и F и т.д.

    Одним из методов построения приближённых функций является интерполирование, когда требуется, чтобы в определённых точках (узлах интерполяции) совпадали значения исходной функции f и аппроксимирующей функции F. В более общем случае должны совпадать значения производных в заданных точках.

    Интерполирование функций используется для замены сложно вычисляемой функции другой, вычисляемой проще; для приближённого восстановления функции по её значениям в отдельных точках; для численного дифференцирования и интегрирования функций; для численного решения нелинейных и дифференциальных уравнений и т.д.

    Простейшая задача интерполирования заключается в следующем. Для некоторой функции на отрезке заданы n+1 значений в точках , которые называются узлами интерполяции. При этом . Требуется построить интерполирующую функцию F(x), принимающую в узлах интерполяции те же значения, что и f(x):

    F(x 0) = f(x 0), F(x 1) = f(x 1), … , F(x n) = f(x n)

    Геометрически это означает нахождение кривой определённого типа, проходящей через заданную систему точек (x i , y i), i = 0,1,…,n.

    Если значения аргумента выходят за область , то говорят об экстраполировании – продолжении функции за область её определения.

    Наиболее часто функция F(x) строится в виде алгебраического полинома . Существует несколько представлений алгебраических интерполяционных полиномов.

    Один из методов интерполирования функций, которая принимает в точках значения - это построение полинома Лагранжа, который имеет следующий вид:

    Степень интерполяционного полинома, проходящего через n+1 узлов интерполяции, равна n.

    Из вида полинома Лагранжа следует, что добавление новой узловой точки приводит к изменению всех членов полинома. В этом состоит неудобство формулы Лагранжа. Зато метод Лагранжа содержит минимальное количество арифметических действий.

    Для построения полиномов Лагранжа возрастающих степеней может быть применена следующая итерационная схема (схема Эйткена).

    Полиномы, проходящие через две точки (x i , y i) , (x j , y j) (i=0,1,…,n-1 ; j=i+1,…,n), могут быть представлены таким образом:

    Полиномы, проходящие через три точки (x i , y i) , (x j , y j) , (x k , y k)

    (i=0,…,n-2 ; j=i+1,…,n-1 ; k=j+1,…,n), могут быть выражены через полиномы L ij и L jk:

    Полиномы для четырёх точек (x i , y i) , (x j , y j) , (x k , y k) , (x l , y l) строятся из полиномов L ijk и L jkl:

    Процесс продолжается до тех пор, пока не будет получен полином, проходящий через n заданных точек.

    Алгоритм вычисления значения полинома Лагранжа в точке XX, реализующий схему Эйткена, может быть записан с помощью оператора:

    for (int i=0;i

    for (int i=0;i<=N-2;i++)Здесь не нужно слово int, программа

    его воспримет как ошибку – повторное объявление переменной,

    переменная i уже была объявлена

    for (int j=i+1;j<=N-1;j++)

    F[j]=((arg-x[i])*F[j]-(arg-x[j])*F[i])/(x[j]-x[i]);

    где массив F – это промежуточные значения полинома Лагранжа. Первоначально следует положить F[I] равными y i . После выполнения циклов F[N] – это значение полинома Лагранжа степени N в точке XX.

    Другой формой представления интерполяционного полинома являются формулы Ньютона. Пусть - равноотстоящие узлы интерполяции; i=0,1,…,n ; - шаг интерполяции.

    1-я интерполяционная формула Ньютона, которая используется для интерполирования «вперёд», имеет вид:

    Называется (конечными) разностями i-го порядка. Они определяются так:

    Нормированный аргумент.

    При интерполяционная формула Ньютона превращается в ряд Тейлора.

    2-я интерполяционная формула Ньютона используется для интерполирования «назад»:

    В последней записи вместо разностей (называемых разностями «вперёд») употребляются разности «назад» :

    В случае неравноотстоящих узлов рассматриваются т.н. разделённые разности

    При этом интерполяционный многочлен в форме Ньютона имеет вид

    В отличие от формулы Лагранжа прибавление новой пары значений. (x n +1 , y n +1) сводится здесь к прибавлению одного нового члена. Поэтому число узлов интерполяции может быть легко увеличено без повторения всего вычисления. Это позволяет оценить точность интерполирования. Однако формулы Ньютона требуют большее количество арифметических действий, чем формулы Лагранжа.

    При n=1 получаем формулу линейного интерполирования:

    При n=2 будем иметь формулу параболического интерполирования:

    При интерполировании функций алгебраические полиномы высокой степени применяются редко из-за значительных вычислительных затрат и больших погрешностей при вычислении значений.

    На практике чаще всего используют кусочно-линейное или кусочно-параболическое интерполирование.

    При кусочно-линейном интерполировании функция f(x) на интервале (i=0,1,…,n-1) аппроксимируется отрезком прямой

    Алгоритм вычисления, реализующий кусочно-линейное интерполирование, может быть записан с помощью оператора:

    for (int i=0;i

    if ((arg>=Fx[i]) && (arg<=Fx))

    res=Fy[i]+(Fy-Fy[i])*(arg-Fx[i])/(Fx-Fx[i]);

    С помощью первого цикла ищем, где находится искомая точка.

    При кусочно-параболическом интерполировании полином строится по 3-м узловым точкам, ближайшим к заданному значению аргумента.

    Алгоритм вычисления, реализующий кусочно-параболическое интерполирование, может быть записан с помощью оператора:

    for (int i=0;i

    y0=Fy;При i=0 элемент не существует!

    x0=Fx; То же самое

    res=y0+(y1-y0)*(arg-x0)/(x1-x0)+(1/(x2-x0))*(arg-x0)*(arg-x1)*(((y2-y1)/(x2-x1))-((y1-y0)/(x1-x0)));

    Применение интерполирования не всегда целесообразно. При обработке экспериментальных данных желательно производить сглаживание функции. Аппроксимация экспериментальных зависимостей по методу наименьших квадратов исходит из требования минимизации среднеквадратичной ошибки

    Коэффициенты аппроксимирующего полинома находятся из решения системы m+1 линейных уравнений, т.н. «нормальных» уравнений , k=0,1,…,m

    Кроме алгебраических полиномов для аппроксимации функций широко используются тригонометрические полиномы

    (см. «численный гармонический анализ»).

    Эффективным аппаратом приближения функции являются сплайны. Для сплайна требуется совпадение его значений и производных в узловых точках с интерполируемой функцией f(x) и её производными до некоторого порядка. Однако построение сплайнов в ряде случаев требует значительных вычислительных затрат.


    1 | | | | | | | | | | | |

    Часто необходимо иметь аналитические выражения для вольт - амперных характеристик нелинейных элементов. Эти выражения могут лишь приближенно представлять ВАХ, поскольку физиче­ские закономерности, которым подчиняются зависимости между напряжениями и токами в нелинейных при­борах, не выражаются аналитически.

    Задача приближенного аналитического представления функции, заданной графически или таблицей значений, в заданных пределах изменения ее аргумента (независимой переменной) называется аппроксимацией. При этом во-первых, делается выбор аппроксимирующей функции, т. е. функции, с помощью которой приближенно представляется заданная зависи­мость, и, во-вторых, выбор критерия оценки «близости» этой зави­симости и аппроксимирующей ее функции.

    В качестве аппроксимирующих функций используются, чаще всего, алгебраические полиномы, некоторые дробные рациональ­ные, экспоненциальные и трансцендентные функции или совокупность линейных функций (отрезков пря­мых линий).

    Будем считать, что ВАХ нелинейного элемента i = fun(u) задана графически, т. е. определена в каждой точке интервала U min и U max , и представляет собой однозначную непрерывную функцию переменной и. Тогда задача аналитического представления вольт-амперной характеристики может рассматриваться как задача ап­проксимации заданной функции ξ(х) выбранной аппроксимирую­щей функцией f (x ).

    О близости аппроксимирующей f (x )и аппроксимируемой ξ(х )функций или, иными словами, о погрешности аппроксимации, обычно судят по наибольшему абсолютному значению разности между этими функциями в интервале аппроксимации а х b, т. е. по величине

    Δ= max‌‌│ f (x )- ξ(x )│

    Часто критерием близости выбирается среднее квадратичное значение разности между указанными функциями в интервале ап­проксимации.

    Иногда под близостью двух функций f(x )и ξ(x ) понимают сов­падение в заданной точке

    x = Хо самих функций и п + 1 их произ­водных.

    Наиболее распространенным способом приближения аналитической функции к заданной является интерполяция (метод выбран­ных точек), когда добиваются совпадения функций f(x )и ξ(x ) в выбранных точках (узлах интерполяции) X k , k = 0, 1, 2, ..., п.

    Погрешность аппроксимации может быть достигнута тем мень­шей, чем больше число варьируемых параметров входит в аппрок­симирующую функцию, т. е., например, чем выше степень аппрок­симирующего полинома или чем больше число отрезков прямых содержит аппроксимирующая линейно-ломаная функция. Одно­временно с этим, естественно, растет объем вычислений, как при решении задачи аппроксимации, так и при последующем анализе нелинейной цепи. Простота этого анализа наряду с особенностями аппроксимируемой функции в пределах интервала аппроксимации служит одним из важнейших критериев при выборе типа аппрок­симирующей функции.

    В задачах аппроксимации вольт-амперных характеристик элек­тронных и полупроводниковых приборов стремиться к высокой точности их воспроизведения, как правило, нет необходимости ввиду значительного разброса характеристик приборов от образца к образцу и существенного влияния на них дестабилизирующих факторов, например, температуры в полупроводниковых приборах. В большинстве случаев достаточно «правильно» воспроизвести об­щий усредненный характер зависимости i = f (u )в пределах ее ра­бочего интервала. Для того чтобы была возможность аналитически рассчитывать цепи с нелинейными элементами, необходимо иметь математические выражения для характеристик элементов. Сами эти характеристики обычно являются экспериментальными, т.е. полученными в результате измерений соответствующих элементов, а затем на этой основе формируются справочные (типовые) данные. Процедуру математического описания некоторой заданной функции в математике называют аппроксимацией этой функции. Существует целый ряд типов аппроксимации: по выбранным точкам, по Тейлору, по Чебышеву и др. В конечном итоге необходимо получить математическое выражение, которое с какими-то заданными требованиями удовлетворяло исходной, аппроксимирующей функции.

    Рассмотрим простейший способ: метод выбранных точек или узлов интерполяции степенным полиномом.

    Необходимо определить коэффициенты полинома. Для этого выбирается (n+1) точек на заданной функции и составляется система уравнений:

    Из этой системы находятся коэффициенты а 0 , а 1 , а 2 , …, а n .

    В выбранных точках аппроксимирующая функция будет совпадать с исходной, в других точках – отличаться (сильно или нет – зависит от степенного полинома).

    Можно использовать экспоненциальный полином:

    Второй метод: метод аппроксимации по Тейлору . В этом случае выбирается одна точка, где будет совпадение исходной функции с аппроксимирующей, но дополнительно ставится условие, чтобы в этой точке совпадали еще и производные.

    Аппроксимация по Батерворту : выбирается простейший полином:

    В этом случае можно определить максимальное отклонение ε на краях диапазона.

    Аппроксимация по Чебышеву : является степенной, там устанавливается совпадение в нескольких точках и минимизируется максимальное отклонение аппроксимирующей функции от исходной. В теории аппроксимации функций доказывается, что наиболь­шее по абсолютной величине отклонение полинома f (x )степени п от непрерывной функции ξ(х ) будет минимально возможным, если в интервале приближения а х b разность

    f(x ) - ξ(х ) не мень­ше, чем п + 2 раза принимает свои последовательно чередующиеся предельные наибольшие f (x ) - ξ(х ) = L > 0 и наименьшие f (x ) - ξ(х ) = -L значения (критерий Чебышева).

    Во многих прикладных задачах находит применение полиноми­альная аппроксимация по среднеквадратическому критерию близо­сти, когда параметры аппроксимирующей функции f (x ) выбирают­ся из условия обращения в минимум в интервале аппроксимации а х b квадрата отклонения функции f (x ) от заданной непре­рывной функции ξ(х ), т. е., из условия:

    Λ= 1/b-a∫ a [f (x )- ξ(x )] 2 dx = min . (7)

    В соответствии с правилами отыскания экстремумов решение задачи сводится к решению системы линейных уравнении, которая образуется в результате приравнивания к нулю первых частных производных функции Λ по каждому из искомых коэффициентов a k аппроксимирующего полинома f (x ), т. е. уравнений

    дΛ ∕дa 0 =0; дΛ ∕дa 1 =0; дΛ ∕дa 2 =0, . . . , дΛ ∕дa n =0. (8)

    Доказано, что и эта система уравнений имеет единственное ре­шение. В простейших случаях оно находится аналитически, а в общем случае - численно.

    Чебышев установил, что должно для максимальных отклонений выполняться равенство:

    В инженерной практике используется еще так называемая кусочно-линейная аппроксимация – это описание заданной кривой отрезками прямых линий.

    В пределах каждого из линиаризированных участков вольт - амперной характеристики применимы все методы анализа колебаний в линейных электрических цепях. Ясно, что, чем на большее число линеаризированных участков разбивается заданная вольт-амперная характеристика, тем точнее она может быть аппроксимирована и тем больше объем вычислений в ходе анализа колебаний в цепи.

    Во многих прикладных задачах анализа колебаний в нелиней­ных резистивных цепях аппроксимируемая вольт - амперная харак­теристика в интервале аппроксимации с достаточной точностью пред­ставляется двумя или тремя отрезками прямых.

    Подобная аппроксимация вольт - амперных характеристик дает в большинстве случаев вполне удовлетворительные по точности результаты анализа колебаний в нели­нейной резистивной цепи при «небольших» по величине воздействи­ях на нелинейный элемент, т. е. ко­гда мгновенные значения токов в нелинейном элементе изменяются в предельно допустимых границах от I = 0 до I = I мах